Thioredoxin-interacting protein mediates sustained VEGFR2 signaling in endothelial cells required for angiogenesis.
نویسندگان
چکیده
OBJECTIVE Thioredoxin-interacting protein (TXNIP) is an α-arrestin protein whose function is important for the regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling and endothelial cell survival. Because VEGFR2 is critical for angiogenesis, we explored the role of TXNIP in VEGF-induced angiogenesis. APPROACH AND RESULTS TXNIP knockdown inhibited VEGF-induced endothelial cell tube formation and proliferation in cultured human umbilical vein endothelial cell. To elucidate the mechanism by which TXNIP altered VEGFR2 signaling in human umbilical vein endothelial cell, we studied phosphorylation of VEGFR2, phospholipase C gamma-1 (PLCγ1), endothelial NO synthase, and Akt (known as protein kinase B). TXNIP knockdown significantly decreased phosphorylation of VEGFR2 and PLCγ1 at times >5 minutes, but phosphorylation was unchanged at 2 minutes, as was Akt and endothelial NO synthase phosphorylation. Cell-surface biotinylation assay showed that TXNIP knockdown significantly attenuated VEGFR2 internalization. These results suggested that TXNIP was required for sustained VEGFR2 signaling, which is mediated largely by internalized VEGFR2. Rab5 knockdown to inhibit the trafficking and fusion of early endosomes significantly blocked VEGF-induced VEGFR2 internalization and phosphorylation of VEGFR2 and PLCγ1. Immunofluorescence and coimmunoprecipitation showed that TXNIP was part of a complex that included Rab5 and VEGFR2. Finally, TXNIP knockdown prevented the association of VEGFR2 and Rab5. CONCLUSIONS Our results show that TXNIP is essential for VEGFR2 internalization in Rab5 positive endosomes, which is required for endothelial cell growth and angiogenesis.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملTransforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis.
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on endothelial cells. VEGF protects endothelial cells from apoptosis; TGF-beta1 induces apoptosis. We have previously shown that VEGF/VEGF receptor-2 (VEGFR2) signaling mediates TGF-beta1 induction of apoptosis. This finding raised an important question: Does this mechanism stimulate or inhibit angiogenesis? Here we report that VE...
متن کاملSelective Targeting of a Novel Epsin-VEGFR2 Interaction Promotes VEGF-Mediated Angiogenesis.
RATIONALE We previously reported that vascular endothelial growth factor (VEGF)-induced binding of VEGF receptor 2 (VEGFR2) to epsins 1 and 2 triggers VEGFR2 degradation and attenuates VEGF signaling. The epsin ubiquitin interacting motif (UIM) was shown to be required for the interaction with VEGFR2. However, the molecular determinants that govern how epsin specifically interacts with and regu...
متن کاملIQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis.
OBJECTIVE Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating reactive oxygen species (ROS) production primarily through the VEGF receptor-2 (VEGFR2). One of the initial responses in established vessels to stimulate angiogenesis is loss of vascular endothelial (VE)-cadherin-based cell-cell adhesions; however, little is known about the underlying mechanisms. IQGAP1 is a...
متن کاملThrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells.
Thrombospondin-1 (TSP-1) inhibits growth factor signaling at the receptor level in microvascular endothelial cells (MVEC), and CD36 has been suggested to be involved in this inhibition, but the mechanisms are not known. We hypothesized that CD36-TSP-1 interaction recruits Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 to the vascular endothelial growth factor receptor 2 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2013